Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 10(7)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202011

RESUMO

Amaranthus palmeri, ranked as the most prolific and troublesome weed in North America, has evolved resistance to several herbicide sites of action. Repeated use of any one herbicide, especially at lower than recommended doses, can lead to evolution of weed resistance, and, therefore, a better understanding of the process of resistance evolution is essential for the management of A. palmeri and other difficult-to-control weed species. Amaranthus palmeri rapidly developed resistance to 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors such as mesotrione. The objective of this study was to test the potential for low-dose applications of mesotrione to select for reduced susceptibility over multiple generations in an A. palmeri population collected from an agricultural field in 2001. F0 plants from the population were initially treated with sub-lethal mesotrione rates and evaluated for survival three weeks after treatment. All F0 plants were controlled at the 1× rate (x = 105 g ai ha-1). However, 2.5% of the F0 plants survived the 0.5× treatment. The recurrent selection process using plants surviving various mesotrione rates was continued until the F4 generation was reached. Based on the GR50 values, the sensitivity index was determined to be 1.7 for the F4 generation. Compared to F0, HPPD gene expression level in the F3 population increased. Results indicate that after several rounds of recurrent selection, the successive generations of A. palmeri became less responsive to mesotrione, which may explain the reduced sensitivity of this weed to HPPD-inhibiting herbicides. The results have significance in light of the recently released soybean and soon to be released cotton varieties with resistance to HPPD inhibitors.

2.
Plant Physiol ; 173(2): 1226-1234, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27956489

RESUMO

Recent and rapid evolution of resistance to glyphosate, the most widely used herbicides, in several weed species, including common waterhemp (Amaranthus tuberculatus), poses a serious threat to sustained crop production. We report that glyphosate resistance in A tuberculatus was due to amplification of the 5-enolpyruvylshikimate-3-P synthase (EPSPS) gene, which encodes the molecular target of glyphosate. There was a positive correlation between EPSPS gene copies and its transcript expression. We analyzed the distribution of EPSPS copies in the genome of A tuberculatus using fluorescence in situ hybridization on mitotic metaphase chromosomes and interphase nuclei. Fluorescence in situ hybridization analysis mapped the EPSPS gene to pericentromeric regions of two homologous chromosomes in glyphosate sensitive A tuberculatus In glyphosate-resistant plants, a cluster of EPSPS genes on the pericentromeric region on one pair of homologous chromosomes was detected. Intriguingly, two highly glyphosate-resistant plants harbored an additional chromosome with several EPSPS copies besides the native chromosome pair with EPSPS copies. These results suggest that the initial event of EPSPS gene duplication may have occurred because of unequal recombination mediated by repetitive DNA. Subsequently, gene amplification may have resulted via several other mechanisms, such as chromosomal rearrangements, deletion/insertion, transposon-mediated dispersion, or possibly by interspecific hybridization. This report illustrates the physical mapping of amplified EPSPS copies in A tuberculatus.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Amaranthus/efeitos dos fármacos , Glicina/análogos & derivados , Resistência a Herbicidas/genética , Amaranthus/genética , Cromossomos de Plantas , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glicina/administração & dosagem , Glicina/farmacologia , Herbicidas/administração & dosagem , Herbicidas/farmacologia , Kansas , Mapeamento Físico do Cromossomo , Proteínas de Plantas/genética , Glifosato
3.
Pest Manag Sci ; 71(9): 1207-12, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25950428

RESUMO

BACKGROUND: Evolution of multiple herbicide resistance in weeds is a serious threat to weed management in crop production. Kochia is an economically important broadleaf weed in the U.S. Great Plains. This study aimed to confirm resistance to four sites of action of herbicides in a single kochia (Kochia scoparia L. Schrad.) population from a crop field near Garden City (GC), Kansas, and further determine the underlying mechanisms of resistance. RESULTS: One-fourth of the GC plants survived the labeled rate or higher of atrazine [photosystem II (PSII) inhibitor], and the surviving plants had the Ser-264 to Gly mutation in the psbA gene, the target site of atrazine. Results showed that 90% of GC plants survived the labeled rate of dicamba, a synthetic auxin. At least 87% of the plants survived up to 72 g a.i. ha(-1) of chlorsulfuron [acetolactate synthase (ALS) inhibitor], and analysis of the ALS gene revealed the presence of Pro-197 to Thr and/or Trp-574 to Lue mutation(s). Most GC plants also survived the labeled rate of glyphosate [5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) inhibitor), and the resistant plants had 5-9 EPSPS gene copies (relative to the ALS gene). CONCLUSION: We confirm the first case of evolution of resistance to four herbicide sites of action (PSII, ALS and EPSPS inhibitors and synthetic auxins) in a single kochia population, and target-site-based mechanisms confer resistance to atrazine, glyphosate and chlorsulfuron.


Assuntos
Bassia scoparia/fisiologia , Resistência a Herbicidas , Herbicidas , Atrazina , Bassia scoparia/genética , DNA de Plantas/genética , Dicamba , Glicina/análogos & derivados , Kansas , Mutação , Plantas Daninhas , Sulfonamidas , Triazinas , Glifosato
4.
Plant Physiol ; 166(3): 1200-7, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25037215

RESUMO

Recent rapid evolution and spread of resistance to the most extensively used herbicide, glyphosate, is a major threat to global crop production. Genetic mechanisms by which weeds evolve resistance to herbicides largely determine the level of resistance and the rate of evolution of resistance. In a previous study, we determined that glyphosate resistance in Kochia scoparia is due to the amplification of the 5-Enolpyruvylshikimate-3-Phosphate Synthase (EPSPS) gene, the enzyme target of glyphosate. Here, we investigated the genomic organization of the amplified EPSPS copies using fluorescence in situ hybridization (FISH) and extended DNA fiber (Fiber FISH) on K. scoparia chromosomes. In both glyphosate-resistant K. scoparia populations tested (GR1 and GR2), FISH results displayed a single and prominent hybridization site of the EPSPS gene localized on the distal end of one pair of homologous metaphase chromosomes compared with a faint hybridization site in glyphosate-susceptible samples (GS1 and GS2). Fiber FISH displayed 10 copies of the EPSPS gene (approximately 5 kb) arranged in tandem configuration approximately 40 to 70 kb apart, with one copy in an inverted orientation in GR2. In agreement with FISH results, segregation of EPSPS copies followed single-locus inheritance in GR1 population. This is the first report of tandem target gene amplification conferring field-evolved herbicide resistance in weed populations.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Bassia scoparia/enzimologia , Glicina/análogos & derivados , Resistência a Herbicidas , Herbicidas/farmacologia , 3-Fosfoshikimato 1-Carboxiviniltransferase/metabolismo , Bassia scoparia/genética , Evolução Biológica , Mapeamento Cromossômico , Amplificação de Genes , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glicina/farmacologia , Hibridização in Situ Fluorescente , Modelos Biológicos , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...